

NTP Research Concept - Indium Tin Oxide (ITO)

Patrick Kirby, Ph.D., DABT Laboratory of Molecular Toxicology National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors Meeting July 23 - 24, 2009

$$In_2O_3$$
 + SnO_2 = ITO (sintering)

ITO target

ITO nanopowder

Nomination

- NIEHS
- · Increased world wide usage
- Lack of adequate toxicity data
- Clinical cases of ITO lung in Japan

 Indium Phosphide (InP) was demonstrated to be carcinogenic in both rats and mice by the NTP in 2001

Production

- 2009 Indium demand = 1555 tons
- 63% generated via 2° production
- 82% used for ITO
- USA imported 150 tons in 2005 compared to 15 tons in 1996

Use

- · Thin coating on flat panel displays
- Field emission displays, heat reflective coatings, solar panels, cathode-ray tubes, windows, gas sensors, photovoltaics, windshields and alloys

Human Exposure

- · ITO target creation
- · ITO film deposition
- ITO recycling
- · Planned NIOSH workplace survey
 - ACGIHTLV: 0.1mg/m³ TWA for In₂O₃
 - NIOSH REL: 0.1 mg/m³ for In₂O₃; 2mg/m³ for SnO₂
 - Indium exposure limit set using unsintered In₂O₃ data

Sputtering deposition

ITO Exposure in the Scientific Literature

Clinical cases of indium lung (ITO) in Japan

 Interstitial pneumonia, two cases of fatal pneumothorax, fibrous lung tissue, interstitial changes on HRCT, elevated serum indium and KL-6 levels

Animal data

- · Single ITO intratracheal administration in female Wistar rats
- Weekly ITO and InP intratracheal administration in hamsters
- Single ITO oropharyngeal administration in B6C3F1 mice

Sintered versus unsintered Indium compounds

- Sintered ITO more toxic than equivalent mix of unsintered IO and TO
- Sintering may enhance toxicity of indium compounds by increasing solubility

Indium Phosphide Inhalation

Assumption 1: Biological Processing by lung macrophages?

Free Indium in lung?

Assumption 2:

Free indium causes cancer?

Key Issues

- Issue 1: Solubility of Indium Compounds
- Issue 2: Sintered vs. non-sintered ITO
- Issue 3: Particle size
- Issue 4: Developmental and reproductive toxicology of Indium compounds
- Issue 5: ITO carcinogenicity potential
- Issue 6: Carcinogenic potential of free indium

Proposed Approach and Specific Aims

- Tier 1: Chemistry of indium compounds
 - o Specific Aim 1: Determine the relative solubility of indium compounds
- Tier 2: 14-day, 90-day subchronic and DART inhalation exposures
 - o Specific Aim 2: Assess ITO and indium chloride toxicity in subchronic studies
 - Specific Aim 3: Assess indium compound effects on reproduction and development if necessary
- Tier 3: Chronic inhalation exposure
 - o Specific Aim 4: Assess long-term toxicity of ITO and indium chloride

Significance and Expected Outcomes

- NTP studies on ITO and InCl₃ will
 - o Address solubility of indium compounds
 - o Characterize ITO toxicity and potential carcinogenicity in both rats and mice following inhalation exposure
 - o Provide data for use in setting occupational exposure limits
 - o Allow some form of comparison between ITO, InCl₃ and InP toxicity
 - May allow similar regulation of all indium compounds